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Abstract 

 

The present study investigates the prediction of academic achievement (high vs. low) 

through four machine learning models (learning trees, bagging, Random Forest and 

Boosting) using several psychological and educational tests and scales in the following 

domains: intelligence, metacognition, basic educational background, learning 

approaches and basic cognitive processing. The sample was composed by 77 college 

students (55% woman) enrolled in the 2nd and 3rd year of a private Medical School from 

the state of Minas Gerais, Brazil. The sample was randomly split into training and 

testing set for cross validation. In the training set the prediction total accuracy ranged 

from of 65% (bagging model) to 92.50% (boosting model), while the sensitivity ranged 

from 57.90% (learning tree) to 90% (boosting model) and the specificity ranged from 

66.70% (bagging model) to 95% (boosting model). The difference between the 

predictive performance of each model in training set and in the testing set varied from -

2.60% to 23.10% in terms of the total accuracy, from -5.60% to 27.50% in the 

sensitivity index and from 0% to 20% in terms of specificity, for the bagging and the 

boosting models respectively. This result shows that these machine learning models can 

be used to achieve high accurate predictions of academic achievement, but the 

difference in the predictive performance from the training set to the test set indicates 

that some models are more stable than the others in terms of predictive performance 

(total accuracy, sensitivity and specificity). The advantages of the tree-based machine 
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learning models in the prediction of academic achievement will be presented and 

discussed throughout the paper. 

 

Keywords: Higher Education; Machine Learning; academic achievement; prediction. 

 

 

 

 

Introduction 

 

The usual methods employed to assess the relationship between psychological 

constructs and academic achievement are correlation coefficients, linear and logistic 

regression analysis, ANOVA, MANOVA, structural equation modelling, among other 

techniques. Correlation is not used in the prediction process, but provides information 

regarding the direction and strength of the relation between psychological and 

educational constructs with academic achievement. In spite of being useful, correlation 

is not an accurate technique to report if one variable is a good or a bad predictor of 

another variable. If two variables present a small or non-statistically significant 

correlation coefficient, it does not necessarily means that one can’t be used to predict 

the other. 

In spite of the high level of prediction accuracy, the artificial neural network 

models do not easily allows the identification of how the predictors are related in the 

explanation of the academic outcome. This is one of the main criticisms pointed by 

researchers against the application of Machine Learning methods in the prediction of 

academic achievement, as pointed by Edelsbrunner and Schneider (2013). However, 

their Machine Learning methods, as the learning tree models, can achieve a high level 

of prediction accuracy, but also provide more accessible ways to identify the 

relationship between the predictors of the academic achievement. 
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Table 1 – Usual techniques for assessing the relationship between academic achievement and 

psychological/educational constructs and its basic assumptions. 

Technique 

Main Assumptions 
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Correlation 
Bivariate 

Normal 
Linear Yes Yes NA NA NA Yes 

Simple 

Linear 

Regression 

Normal Linear Yes Yes 
Predictors are 

independent 
NA Yes Yes 

Multiple 

Regression 
Normal Linear Yes Yes 

Predictors are 

independent/Errors 

are independent 

Yes Yes Yes 

ANOVA Normal Linear Yes Yes 
Predictors are 

independent 
Yes Yes Yes 

MANOVA Normal Linear Yes Yes 
Predictors are 

independent 
Yes Yes Yes 

Logistic 

Regression 

True 

conditional 

probabilities 

are a logistic 
function of the 

independent 

variables 

Independent 

variables are 

not linear 
combinations 

of each other 

No Yes 
Predictors are 

independent 
NA Yes Yes 

Structural 

Equation 

Modelling 

Normality of 

univariate 

distributions 

Linear 

relation 

between 

every 

bivariate 

comparisons 

Yes Yes NA NA Yes Yes 

 

 

The goal of the present paper is to introduce the basic ideas of four specific 

learning tree’s models: single learning trees, bagging, Random Forest and Boosting. 

These techniques will be applied to predict academic achievement of college students 

(high achievement vs. low achievement) using the result of an intelligence test, a basic 

cognitive processing battery, a high school knowledge exam, two metacognitive scales 

and one learning approaches’ scale. The tree algorithms do not make any assumption 

regarding normality, linearity of the relation between variables, homoscedasticity, 
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collinearity or independency (Geurts, Irrthum, & Wehenkel, 2009). They also do not 

demand a high sample-to-predictor ratio and are more suitable to interaction effects than 

the classical techniques pointed before. These techniques can provide insightful 

evidences regarding the relationship of educational and psychological tests and scales in 

the prediction of academic achievement. They can also lead to improvements in the 

predictive accuracy of academic achievement, since they are known as the state-of-the-

art methods in terms of prediction accuracy (Geurts et al., 2009; Flach, 2012).  

 

 

Presenting New Approaches to Predict Academic Achievement 

 

Machine learning is a relatively new science field composed by a broad class of 

computational and statistical methods used to extract a model from a system of 

observations or measurements (Geurts et al., 2009; Hastie, Tibshirani, & Friedman, 

2009). The extraction of a model from the sole observations can be used to accomplish 

different kind of tasks for predictions, inferences, and knowledge discovery (Geurts et 

al., 2009; Flach, 2012). 

Machine Learning techniques are divided in two main areas that accomplish 

different kinds of tasks: unsupervised and supervised learning. In the unsupervised 

learning field the goal is to discover, to detect or to learn relationships, structures, trends 

or patterns in data. There is a d-vector of observations or measurements of features, 

                , but no previously known outcome, or no associated 

response (Flach, 2012; James, Witten, Hastie, & Tibshirani, 2013). The features   can 

be of any kind: nominal, ordinal, interval or ratio.  

In the supervised learning field, by its turn, for each observation of the predictor 

(or independent variable)   ,        , there is an associated response or outcome   . 

The vector    belongs to the feature space  ,     , and the vector    belongs to the 

output space  ,      . The task can be a regression or a classification. Regression is 

used when the outcome has an interval or ratio nature, and classification is used when 

the outcome variable has a categorical nature. When the task is of classification (e.g. 

classifying people into a high or low academic achievement group), the goal is to 

construct a  labeling function     that maps the feature space into the output space 
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composed by a small and finite set of classes                , so that       . In 

this case the output space is the set of finite classes:    . In sum, in the classification 

problem a categorical outcome (e.g. high or low academic achievement), is predicted 

using a set of features (or predictors, independent variables). In the regression task, the 

value of an outcome in interval or ratio scale (for example the Rasch score of an 

intelligence test) is predicted using a set of features. The present paper will focus in the 

classification task. 

From among the classification methods of Machine Learning, the tree based 

models are supervised learning techniques of special interest for the education research 

field, since it is useful: 1) to discover which variable, or combination of variables, better 

predicts a given outcome (e.g. high or low academic achievement); 2) to identify the 

cutoff points for each variable that are maximally predictive of the outcome; and 3) to 

study the interaction effects of the independent variables that lead to the purest 

prediction of the outcome.   

A classification tree partitions the feature space into several    distinct mutually 

exclusive regions (non-overlapping). Each region is fitted with a specific model that 

performs the labeling function, designating one of the    classes to that particular space.  

The class is assigned to the    region of the feature space by identifying the majority 

class in that region. In order to arrive in a solution that best separates the entire feature 

space into more pure nodes (regions), recursive binary partitions is used. A node is 

considered pure when 100% of the cases are of the same class, for example, low 

academic achievement. A node with 90% of low achievement and 10% of high 

achievement students is more “pure” then a node with 50% of each. Recursive binary 

partitions work as follows. The feature space is split into two regions using a specific 

cutoff from the variable of the feature space      that leads to the most purity 

configuration. Then, each region of the tree is modeled accordingly to the majority 

class. Then one or two original nodes are split into more nodes, using some of the given 

predictor variables that provide the best fit possible. This splitting process continues 

until the feature space achieves the most purity configuration possible, with    regions 

or nodes classified with a distinct    class. Learning trees have two main basic tuning 

parameters (for more fine grained tuning parameters see Breiman, Friedman, Olshen & 
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Stone, 1984): 1) the number of features used in the prediction     , and 2) the 

complexity of the tree, which is the number of possible terminal nodes     . 

If more than one predictor is given, then the selection of each variable used to 

split the nodes will be given by the variable that splits the feature space into the most 

purity configuration. It is important to point that in a classification tree, the first split 

indicates the most important variable, or feature, in the prediction. Leek (2013)
 

synthesizes how the tree algorithm works as follow: 1) iteratively split variables into 

groups; 2) split the data where it is maximally predictive; and 3) maximize the amount 

of homogeneity in each group.  

The quality of the predictions made using single learning trees can verified using 

the misclassification error rate and the residual mean deviance (Hastie et al., 2009). In 

order to calculate both indexes, we first need to compute the proportion of class   in 

the node  . As pointed before, the class to be assigned to a particular region or node 

will be the one with the greater proportion in that node. Mathematically, the proportion 

of class    in a node   of the region   , with    people is: 

 

      
 

  

         

     

 

 

The labeling function that will assign a    class to a node   is:           . The 

misclassification error is simply the proportion of cases or observations that do not 

belong to the    class in the   region: 

 

 

  
         

     

         

 

and the residual mean deviance is given by the following formula: 
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where      
 is the number of people (or cases/observations) from the    class in the   

region,   is the size of the sample, and     is the number of terminal nodes (James et al., 

2013).  

Deviance is preferable to misclassification error because is more sensitive to node 

purity. For example, let’s suppose that two trees (A and B) have 800 observations each, 

of high and low achievement students (50% in each class). Tree A have two nodes, 

being A1 with 300 high and 100 low achievement students, and A2 with 100 high and 

300 low achievement students. Tree B also have two nodes: B1 with 200 high and 400 

low, and B2 with 200 high and zero low achievement students. The misclassification 

error rate for tree A and B are equal (.25). However, tree B produced more pure nodes, 

since node B2 is entirely composed by high achievement people, thus it will present a 

smaller deviance than tree A. A pseudo R
2 

for the tree model can also be calculated 

using the deviance: 

 

Pseudo R
2
 =                           . 

 

Geurts, Irrthum and Wehenkel (2009) argue that learning trees are among the 

most popular algorithms of Machine Learning due to three main characteristics: 

interpretability, flexibility and ease of use. Interpretability means that the model 

constructed to map the feature space into the output space is easy to understand, since it 

is a roadmap of if-then rules. James, Witten, Hastie and Tibshirani (2013) points that the 

tree models are easier to explain to people than linear regression, since it mirrors more 

the human decision-making then other predictive models. Flexibility means that the tree 

techniques are applicable to a wide range of problems, handles different kind of 

variables (including nominal, ordinal, interval and ratio scales), are non-parametric 

techniques and does not make any assumption regarding normality, linearity or 

independency (Geurts et al., 2009). Furthermore, it is sensible to the impact of 

additional variables to the model, being especially relevant to the study of incremental 

validity. It also assesses which variable or combination of them, better predicts a given 

outcome, as well as calculates which cutoff values are maximally predictive of it. 
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Finally, the ease of use means that the tree based techniques are computationally simple, 

yet powerful.  

In spite of the qualities of the learning trees pointed above, the techniques suffer 

from two related limitations. The first one is known as the overfitting issue. Since the 

feature space is linked to the output space by recursive binary partitions, the tree models 

can learn too much from data, modeling it in such a way that may turn out a sample 

dependent model. Being sample dependent, in the sense that the partitioning is too 

suitable to the data set in hand, it will tend to behave poorly in new data sets. The 

second issue is exactly a consequence of the overfitting, and is known as the variance 

issue. The predictive error in a training set, a set of features and outputs used to grown a 

classification tree for the first time, may be very different from the predictive error in a 

new test set. In the presence of overfitting, the errors will present a large variance from 

the training set to the test set used. Additionally, the classification tree does not have the 

same predictive accuracy as other classical Machine Learning approaches (James et al., 

2013). In order to prevent overfitting, the variance issue and also to increase the 

prediction accuracy of the classification trees, a strategy named ensemble techniques 

can be used.  

Ensemble techniques are simply the junction of several trees to perform the 

classification task based on the prediction made by every single tree. There are three 

main ensemble techniques to classification trees: bagging, Random Forest and boosting. 

The first two techniques increases prediction accuracy and decreases variance between 

data sets as well as avoid overfitting. The boosting technique, by its turn, only increases 

accuracy but can lead to overfitting (James et al., 2013).  

Bagging (Breiman, 2001b) is the short hand for bootstrap aggregating, and is a 

general procedure for reducing the variance of classification trees (Hastie et al., 2009; 

Flach, 2012; James et al., 2013). The procedure generates    different bootstraps from 

the training set, growing a tree that assign a    class to the    regions of the feature 

space for every  . Lastly, the   class of   regions of each   tree is recorded and the 

majority vote is taken (Hastie et al., 2009; James et al., 2013). The majority vote is 

simply the most commonly occurring class over all   trees. As the bagged trees does 

not use the entire observations (only a bootstrapped subsample of it, usually 2/3), the 

remaining observations (known as out-of-bag, or OOB) is used to verify the accuracy of 
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the prediction.  The out-of-bag error can be computed as a «valid estimate of the test 

error for the bagged model, since the response for each observation is predicted using 

only the trees that were not fit using that observation» (James et al., 2013, p.323). 

Bagged trees have two main basic tuning parameters: 1) the number of features used in 

the prediction,     , is set as the total number of predictors in the feature space, and 2) 

the size   of the bootstrap set  , which is equal the number of trees to grow.  

The second ensemble technique is the Random Forest (Breiman, 2001a). Random 

Forest differs from bagging since the first takes a random subsample   of the original 

data set   with replacement to growing the trees, as well as selects a subsample    of 

the feature space   at each node, so that the number of the selected features (variables) 

is smaller than the number of total elements of the feature space:            . As 

points Breiman (2001a), the value of       is held constant during the entire procedure 

for growing the forest, and usually is set to      . By randomly subsampling the 

original sample and the predictors, Random Forest improves the bagged tree method by 

decorrelating the trees (Hastie et al., 2009). Since it decorrelates the trees grown, it also 

decorrelate the errors made by each tree, yielding a more accurate prediction.  

And why the decorrelation is important? James et al. (2013) create a scenario to 

make this characteristic clear. Let’s follow their interesting argument. Imagine that we 

have a very strong predictor in our feature space, together with other moderately strong 

predictors. In the bagging procedure, the strong predictor will be in the top split of most 

of the trees, since it is the variable that better separates the    classes. By consequence, 

the bagged trees will be very similar to each other with the same variable in the top 

split, making the predictions highly correlated, and thus the errors also highly 

correlated. This will not lead to a decrease in the variance if compared to a single tree. 

The Random Forest procedure, on the other hand, forces each split to consider only a 

subset of the features, opening chances for the other features to do their job. The strong 

predictor will be left out of the bag in a number of situations, making the trees very 

different from each other. As a result, the resulting trees will present less variance in the 

classification error and in the OOB error, leading to a more reliable prediction. Random 

Forests have two main basic tuning parameters: 1) the size of the subsample of features 
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used in each split,      , which is mandatory to be           , being generally set 

as       and 2) the size   of the set  , which is equal the number of trees to grow. 

The last technique to be presented in the current paper is the boosting (Freund & 

Schapire, 1997). Boosting is a general adaptive method, and not a traditional ensemble 

technique, where each tree is constructed based on the previous tree in order to increase 

the prediction accuracy. The boosting method learns from the errors of previous trees, 

so unlikely bagging and Random Forest, it can lead to overfitting if the number of trees 

grown is too large. Boosting has three main basic tuning parameters: 1) the size   of the 

set  , which is equal the number of trees to grow, 2) the shrinkage parameter  , which 

is the rate of learning from one tree to another, and 3) the complexity of the tree, which 

is the number of possible terminal nodes       . James et al. (2013) point that   is 

usually set to 0.01 or to 0.001, and that the smaller the value of  , the highest needs to 

be the number of trees    , in order to achieve good predictions.  

The Machine Learning techniques presented in this paper can be helpful in 

discovering which psychological or educational test, or a combination of them, better 

predict academic achievement. The learning trees have also a number of advantages 

over the most traditional prediction models, since they doesn’t make any assumptions 

regarding normality, linearity or independency of the variables, are non-parametric, 

handles different kind of predictors (nominal, ordinal, interval and ratio), are applicable 

to a wide range of problems, handles missing values and when combined with ensemble 

techniques provide the state-of-the-art results in terms of accuracy (Geurts et al., 2009).  

The present paper introduced the basics ideas of the learning trees’ techniques, in 

the first two sections above, and now they will be applied to predict the academic 

achievement of college students (high achievement vs. low achievement). Finally, the 

results of the four methods (single trees, bagging, Random Forest and boosting) will be 

compared with each other.  
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Methods 

 

Participants 

 

The sample is composed by 77 college students (55% woman) enrolled in the 2
nd

 

and 3
rd

 year of a private Medical School from the state of Minas Gerais, Brasil. The 

sample was selected randomly, using the faculty’s data set with the student’s 

achievement recordings. From all the 2
nd

 and 3
rd

 year students we selected 50 random 

students with grades above 70% in the last semester, and 50 random students with 

grades equal to or below 70%. The random selection of students was made without 

replacement. The 100 random students selected to participate in the current study 

received a letter explaining the goals of the research, and informing the assessment 

schedule (days, time and faculty room). Those who agreed in being part of the study 

signed a inform consent, and confirmed they would be present in the schedule days to 

answer all the questionnaires and tests. From all the 100 students, only 77 appeared in 

the assessment days.  

 

Instruments 

 

The Inductive Reasoning Developmental Test (TDRI) was developed by Gomes 

and Golino (2009) and by Golino and Gomes (2012) to assess developmental stages of 

reasoning based on Common’s Hierarchical Complexity Model (Commons & Richards, 

1984; Commons, 2008; Commons & Pekker, 2008) and on Fischer’s Dynamic Skill 

Theory (Fischer, 1980; Fischer & Yan, 2002). This is a pencil-and-paper test composed 

by 56 items, with a time limit of 100 minutes. Each item presents five letters or set of 

letters, being four with the same rule and one with a different rule. The task is to 

identify which letter or set of letters have the different rule.  

 

 Figure 1 – Example of TDRI’s item 1 (from the first developmental stage assessed).  
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Golino and Gomes (2012) evaluated the structural validity of the TDRI using 

responses from 1459 Brazilian people (52.5% women) aged between 5 to 86 years 

(M=15.75; SD=12.21). The results showed a good fit to the Rasch model (Infit: M=.96; 

SD=.17) with a high separation reliability for items (1.00) and a moderately high for 

people (.82). The item’s difficulty distribution formed a seven cluster structure with 

gaps between them, presenting statistically significant differences in the 95% c.i. level 

(t-test). The CFA showed an adequate data fit for a model with seven first-order factors 

and one general factor [χ
2
(61)= 8832.594, p=.000; CFI=.96; RMSEA=.059]. The latent 

class analysis showed that the best model is the one with seven latent classes 

(AIC:263.380; BIC:303.887; Loglik:-111.690). The TDRI test has a self-appraisal scale 

attached to each one of the 56 items. In this scale, the participants are asked to appraise 

their achievement on the TDRI items, by reporting if he/she passed or failed the item. 

The scoring procedure of the TDRI self-appraisal scale works as follows. The 

participant receive a score of 1 in two situations: 1) if the participant passed the ith item 

and reported that he/she passed the item, and 2) if the participant failed the ith item and 

reported that he/she failed the item. On the other hand, the participant receives a score 

of 0 if his appraisal does not match his performance on the ith item: 1) he/she passed the 

item, but reported that failed it, and 2) he/she failed the item, but reported that passed it.  

The Metacognitive Control Test (TCM) was developed by Golino and Gomes 

(2013) to assess the ability of people to control intuitive answers to logical-

mathematical tasks. The test is based on Shane Frederick’s Cognitive Reflection Test 

(Frederick, 2005), and is composed by 15 items. The structural validity of the test was 

assessed by Golino and Gomes (2013) using responses from 908 Brazilian people 

(54.8% women) aged between 9 to 86 years (M=27.70, SD=11.90). The results showed 

a good fit to the Rasch model (Infit: M=1.00; SD=.13) with a high separation reliability 

for items (.99) and a moderately high for people (.81). The TCM also has a self-

appraisal scale attached to each one of its 15 items. The TCM self-appraisal scale is 

scored exactly as the TDRI self-appraisal scale: an incorrect appraisal receives a score 

of 0, and a correct appraisal receives a score of 1. 

The Brazilian Learning Approaches Scale (EABAP) is a self-report questionnaire 

composed by 17 items, developed by Gomes and colleagues (Gomes, 2010; Gomes, 

Golino, Pinheiro, Miranda, & Soares, 2011). Nine items were elaborated to measure 
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deep learning approaches, and eight items measure surface learning approaches. Each 

item has a statement that refers to a student’s behavior while learning. The student 

considers how much of the behavior described is present in his life, using a Likert-like 

scale ranging from (1) not at all, to (5) entirely present. BLAS presents reliability, 

factorial structure validity, predictive validity and incremental validity as good marker 

of learning approaches. These psychometrical proprieties are described respectively in 

Gomes et al. (2011), Gomes (2010), and Gomes and Golino (2012). In the present 

study, the surface learning approach items scale were reverted in order to indicate the 

deep learning approach. So, the original scale from 1 (not at all) to 5 (entirely present), 

that related to surface learning behaviors, was turned into a 5 (not at all) to 1 (entirely 

present) scale of deep learning behaviors. By doing so, we were able to analyze all 17 

items using the partial credit Rasch Model. 

The Cognitive Processing Battery is a computerized battery developed by 

Demetriou, Mouyi and Spanoudis (2008) to investigate structural relations between 

different components of the cognitive processing system. The battery has six tests: 

Processing Speed (PS), Discrimination (DIS), Perceptual Control (PC), Conceptual 

Control (CC), Short-Term Memory (STM), and Working Memory (WM). Golino, 

Gomes and Demetriou (2012) translated and adapted the Cognitive Processing Battery 

to Brazilian Portuguese. They evaluated 392 Brazilian people (52.3% women) aged 

between 6 to 86 years (M= 17.03, SD= 15.25). The Cognitive Processing Battery tests 

presented a high reliability (Cronbach’s Alpha), ranging from .91 for PC and .99 for the 

STM items. WM and STM items were analyzed using the dichotomous Rasch Model, 

and presented an adequate fit, each one showing an infit meansquare mean of .99 

(WM’s SD=.08; STM’s SD=.10). In accordance with earlier studies, the structural 

equation modeling of the variables fitted a hierarchical, cascade organization of the 

constructs (CFI=.99; GFI=.97; RMSEA=.07), going from basic processing to complex 

processing: PS  DIS  PC  CC  STM  WM. 

The High School National Exam (ENEM) is a 180 item educational examination 

created by Brazilian’s Government to assess high school student’s abilities on school 

subjects (see http://portal.inep.gov.br/). The ENEM result is now the main student’s 

selection criteria to enter Brazilian Public universities. A 20 item version of the exam 

was created to assess the Medical School students’ basic educational abilities.  
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The student’s ability estimates on the Inductive Reasoning Developmental Test 

(TDRI), on the Metacognitive Control Test (TCM), on the Brazilian Learning 

Approaches Scale (EABAP), and on the memory tests of the Cognitive Processing 

Battery, were computed using the original data set of each test, using the software 

Winsteps (Linacre, 2012). This procedure was followed in order to achieve reliable 

estimates, since only 77 medical students answered the tests. The mixture of the original 

data set with the Medical School students’ answers didn’t change the reliability or fit to 

the models used. A summary of the separation reliability and fit of the items, the 

separation reliability of the sample, the statistical model used, and the number of 

medical students that answered each test is provided in Table 2. 

 

Table 2 – Fit, reliability, model used and sample size per test used. 

Test 

Item Person 

Infit:  

M (SD) 
Model 

Medical  

Students’ 

N (%) 

R
el

ia
b

il
it

y
 

In
fi

t:
  

M
 (

S
D

) 

R
el

ia
b

il
it

y
 

Inductive Reasoning  

Developmental Test (TDRI) 
1.00 .96 (.17) .82 1.00 (.97) 

Dichotomous  

Rasch Model 
59 (76.62) 

TDRI's Self-Appraisal Scale  .83 1.01 (.16) .62 .97 (.39) 
Dichotomous  

Rasch Model 
59 (76.62) 

Metacognitive Control Test 

(MCT) 
.99 1.00 (.13) .81 .95 (.42) 

Dichotomous  

Rasch Model 
53 (68.83) 

MCT's Self-Appraisal Scale .96 1.00 (.16) .72 .99 (.24) 
Dichotomous  

Rasch Model 
53 (68.83) 

Brazilian Learning  

Approaches Scale (EABAP) 
.99 1.01 (.11) .80 1.03 (.58) 

Partial Credit  

Rasch Model 
59 (76.62) 

ENEM .90 .93 (.29) .77 .96 (.33) 
Dichotomous  

Rasch Model 
40 (51.94) 

Processing Speed α=.96 NA NA NA NA 46 (59.74) 

Discrimination α=.98 NA NA NA NA 46 (59.74) 

Perceptual Control α=.91 NA NA NA NA 46 (59.74) 

Conceptual Control α=.96 NA NA NA NA 46 (59.74) 

Short Term Memory .99 .99 (.10) .79 .98 (.25) 
Dichotomous  

Rasch Model 
46 (59.74) 

Working Memory .98 .99 (.07) .81 .99 (.16) 
Dichotomous  

Rasch Model 
46 (59.74) 
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Procedures 

 

After estimating the student’s ability in each test or extracting the mean response 

time (in the computerized tests: PS, DIS, PC and CC) the Shapiro-Wilk test of 

normality was conducted in order to discover which variables presented a normal 

distribution. Then, the correlations between the variables were computed using the 

heterogeneous correlation function (hector) of the polycor package (Fox, 2010) of the R 

statistical software. To verify if there was any statistically significant difference 

between the students’ groups (high achievement vs. low achievement) the two-sample T 

test was conducted in the normally distributed variables and the Wilcoxon Sum-Rank 

test in the non-normal variables, both at the 0.05 significance level. In order to estimate 

the effect sizes of the differences the R’s compute.es package (Del Re, 2013) was used. 

This package computes the effect sizes, along with their variances, confidence intervals, 

p-values and the common language effect size (CLES) indicator using the p-values of 

the significance testing. The CLES indicator expresses how much (in %) the score from 

one population is greater than the score of the other population if both are randomly 

selected (Del Re, 2013).  

The sample was randomly split in two sets, training and testing. The training set is 

used to grow the trees, to verify the quality of the prediction in an exploratory fashion, 

and to adjust the tuning parameters. Each model created using the training set is applied 

in the testing set to verify how it performs on a new data set. 

The single learning tree technique was applied in the training set having all the 

tests plus sex as predictors, using the package tree (Ripley, 2013) of the R software. The 

quality of the predictions made in the training set was verified using the 

misclassification error rate, the residual mean deviance and the Pseudo R
2
. The 

prediction made in the cross-validation using the test set was assessed using the total 

accuracy, the sensitivity and the specificity. Total accuracy is the proportion of 

observations correctly classified: 
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where       is the number of observations in the testing set. The sensitivity is the rate of 

observations correctly classified in a target class, e.g.                   , over the 

number of observations that belong to that class: 

 

     
             

          

 

 

Finally, specificity is the rate of correctly classified observations of the non-target 

class, e.g.                    , over the number of observations that belong to 

that class: 

 

     
             

          

 

 

The bagging and the Random Forest technique were applied using the 

randomForest package (Liaw & Wiener, 2012). As the bagging technique is the 

aggregation trees using n random subsamples, the randomForest package can be used to 

create the bagging classification by setting the number of features (or predictors) equal 

the size of the feature set:           . In order to verify the quality of the prediction 

both in the training (modeling phase) and in the testing set (cross-validation phase), the 

total accuracy, the sensitivity and specificity were used. Since the bagging and the 

random forest are black box techniques – i.e. there is only a prediction based on 

majority vote and no “typical tree” to look at the partitions – to determine which 

variable is important in the prediction two importance measures will be used: the mean 

decrease of accuracy and the mean decrease of the Gini index. The former indicates 

how much in average the accuracy decreases on the out-of-bag samples when a given 

variable is excluded from the model (James et al., 2013). The latter indicates «the total 

decrease in node impurity that results from splits over that variable, averaged over all 

trees» (James et al., 2013, p.335). The Gini Index can be calculated using the formula 

below: 
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Finally, in order to verify which model presented the best predictive performance 

(accuracy, sensitivity and specificity) the Marascuilo (1966) procedure was used. This 

procedure points if the difference between all pairs of proportions is statistically 

significant. Two kinds of comparisons were made: difference between sample sets and 

differences between models. In the Marascuilo procedure, a test value and a critical 

range is computed to all pairwise comparisons. If the test value exceeds the critical 

range the difference between the proportions is considered significant at .05 level. A 

more deep explanation of the procedure can be found at the NIST/Semantech website 

[http://www.itl.nist.gov/div898/handbook/prc/section4/prc474.htm]. The complete 

dataset used in the current study (Golino & Gomes, 2014) can be downloaded for free at 

http://dx.doi.org/10.6084/m9.figshare.973012. 

 

 

Results 

 

The only predictors that showed a normal distribution were the EABAP (W=.97, 

p=.47), the ENEM exam (W=.97, p=.47), processing speed (W=.95, p=.06) and 

perceptual control (W=.95, p=.10). All other variables presented a p-value smaller than 

.05. In terms of the difference between the high and the low achievement groups there 

was a statistically significant difference at the 95% level in the mean ENEM Rasch 

score (  High=1.13,   =1.24,   Low=-1.08,   
Low=2.68, t(39)=4.8162, p=.000), in the 

median Rasch score of the TDRI (  High=1.45,   = 2.23,   Low = .59,   
Low=1.58, 

W=609, p=.008), in the median Rasch score of the TCM                                 

(  High=1.03,   =2.96,   Low=-2.22,   
Low=8.61, W=526, p=.001), in the median Rasch 

score of the TDRI’s self-appraisal scale (  High=2.00,   =2.67,   Low=1.35,   
Low=1.63, 

W=646, p=.001), in the median Rasch score of the TCM’s self-appraisal scale 

(  High=1.90,   =3.25,   Low=-1.46,   
Low=5.20, W=474, p=.000),  and in the median 

discrimination time (  High=440,   =10.355,   Low= 495,   
Low=7208, W=133, p=.009). 

http://www.itl.nist.gov/div898/handbook/prc/section4/prc474.htm
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The effect sizes, its 95% confidence intervals, variance, significance and common 

language effect sizes are described in Table 3. 

 

Table 3 – Effect Sizes, Confidence Intervals, Variance, Significance and Common Language 

Effect Sizes (CLES). 

Test 
Effect Size of  

the difference (d) 
95% C.I. (d)    (d) p (d) CLES 

ENEM 1.46 0.73, 2.19 .13 .00 84.88% 

Inductive Reasoning  

Developmental Test  

(TDRI) 

0.64 0.11, 1.18 .07 .02 67.54% 

Metacognitive  

Control Test 

(TCM) 

0.87 0.29, 1.45 .08 .00 73.01% 

TDRI’ Self-Appraisal 

Scale 
0.81 0.27, 1.36 .07 .00 71.73% 

TCM’ Self-Appraisal 

Scale 
1.15 0.52, 1.78 .10 .00 79.21% 

Discrimination 0.75 0.11, 1.38 .10 .02 70.19% 

 

  

Considering the correlation matrix presented in Figure 2, the only variables with 

moderate correlations (greater than .30) with academic grade was the TCM (.54), the 

TDRI (.46), the ENEM exam (.49), the TCM Self-Appraisal Scale (.55) and the TDRI 

Self-Appraisal Scale (.37). The other variables presented only small correlations with 

the academic grade. So, considering the analysis of differences between groups, the size 

of the effects and the correlation pattern, it is possible to elect some variables as 

favorites for being predictive of the academic achievement. However, as the learning 

tree analysis showed, the picture is a little bit different than showed in Table 2 and 

Figure 2. 

In spite of inputting all the tests plus sex as predictors in the single tree analysis, 

the tree package algorithm selected only three of them to construct the tree: the TCM, 

the EABAP (in the Figure 3, represented as DeepAp) and the TDRI’ Self-Appraisal 

Scale (in the Figure 3, represented as SA_TDRI). These three predictors provided the 

best split possible in terms of misclassification error rate (.27), residual mean deviance 

(.50) and Pseudo-R
2
 (.67) in the training set. The tree constructed has four terminal 
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nodes (Figure 3). The TCM is the top split of the tree, being the most important 

predictor, i.e. the one who best separates the observations into two nodes. People with 

TCM’ Rasch score lower than -1.29 are classified as being part of the low achievement 

class, with a probability of 52.50%. 

 

 

Figure 2 – The Correlation Matrix. 

 

 

By its turn, people with TCM’ Rasch score greater than -1.29 and with EABAP’s 

Rasch score (DeepAp) greater than 0.54 are classified as being part of the high 

achievement class, with a probability of 60%. People are also classified as belonging to 

the high achievement class if they present a TCM’ Rasch score greater than -1.29, an 

EABAP’s Rasch Score (DeepAp) greater than 0.54, but a TDRI’s Self-Appraisal Rasch 

Score greater than 2.26, with a probability of 80%. On the other hand, people are 

classified as belonging to the low achievement class with 60% probability if they have 
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the same profile as the previous one but the TDRI’s Self-Appraisal Rasch score being 

less than 2.26. The total accuracy of this tree is 72.50%, with a sensitivity of 57.89% 

and a specificity of 85.71%. The tree was applied in the testing set for cross-validation, 

and presented a total accuracy of 64.86%, a sensitivity of 43.75% and a specificity of 

80.95%. There was a difference of 7.64% in the total accuracy, of 14.14% in the 

sensitivity and of 4.76% in the specificity from the training set to the test set. 

 

 

Figure 3 – Single tree grown using the tree package. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The result of the bagging model with one thousand bootstrapped samples showed 

an out-of-bag error rate of .37, a total accuracy of 65%, a sensitivity of 63.16% and a 

specificity of 66.67%. Analyzing the mean decrease in the Gini index, the three most 

important variables for node purity were, in decreasing order of importance: Deep 

Approach (EABAP), TCM, and TDRI Self-Appraisal (Figure 4). The higher the 

decrease in the Gini index, the higher the node purity when the variable is used. 

Figure 5 shows the high achievement prediction error (green line), out-of-bag 

error (red line) and low achievement prediction error (black line) per tree. The errors 

became more stable with more than 400 trees. 
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Figure 4 – Mean decrease of the Gini index in the Bagging Model. 

 

 

 

 

Figure 5 – Bagging’s out-of-bag error (red), high achievement prediction error 

(green) and low achievement prediction error (blue). 
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The bagging model was applied in the testing set for cross-validation, and 

presented a total accuracy of 67.56%, a sensitivity of 68.75% and a specificity of 

66.67%. There was a difference of 2.56% in the total accuracy and of 5.59% in the 

sensitivity. No difference in the specificity from the training set to the test set was 

found. 

The result of the Random Forest model with one thousand trees showed an out-of-

bag error rate of .32, a total accuracy of 67.50%, a sensitivity of 63.16% and a 

specificity of 71.43%. The mean decrease in the Gini index showed a similar result of 

the bagging model. The four most important variables for node purity were, in 

decreasing order of importance: Deep Approach (EABAP), TDRI Self-Appraisal, TCM 

Self-Appraisal and TCM (Figure 6).  

 

Figure 6 – Mean decrease of the Gini index in the Random Forest Model. 

 

 
 

The Random Forest model was applied in the testing set for cross-validation, and 

presented a total accuracy of 72.97%, a sensitivity of 56.25% and a specificity of 

81.71%. There was a difference of 5.47% in the total accuracy, of 6.91% in the 

sensitivity, and of 10.28% in the specificity. 
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Figure 7 shows the high achievement prediction error (green line), out-of-bag 

error (red line) and low achievement prediction error (black line) per tree. The errors 

became more stable with approximately more than 250 trees. 

 

 
Figure 7 – Random Forest’s out-of-bag error (red), high achievement prediction 

error (green) and low achievement prediction error (blue). 

 

 

 

The result of the boosting model with ten trees, shrinkage parameter of 0.001, tree 

complexity of two, and setting the minimum number of split to one, resulted in a total 

accuracy of 92.50%, a sensitivity of 90% and a specificity of 95%. Analyzing the mean 

decrease in the Gini index, the three most important variables for node purity were, in 

decreasing order of importance: Deep Approach (EABAP), TCM and TCM Self-

Appraisal (Figure 8). 

The boosting model was applied in the testing set for cross-validation, and 

presented a total accuracy of 69.44%, a sensitivity of 62.50% and a specificity of 75%. 

There was a difference of 22.06% in the total accuracy, of 27.50% in the sensitivity, and 

of 20% in the specificity. Figure 9 shows the variability of the error by iterations in the 

training and testing set. 
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Figure 8 – Mean decrease of the Gini index in the Boosting Model. 

 

 

 

 

Figure 9 – Boosting’s prediction error by iterations in the training and in the testing set. 
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Table 4 synthesizes the results of the learning tree, bagging, random forest and 

boosting models. The boosting model was the most accurate, sensitive and specific in 

the prediction of the academic achievement class (high or low) in the training set (see 

Table 4 and Table 5). Furthermore, there is enough data to conclude a significant 

difference between the boosting model and the other three models, in terms of accuracy, 

sensitivity and specificity (see Table 5). However, it was also the one with the greater 

difference in the prediction between the training and the testing set. This difference was 

also statistically significant in the comparison with the other models (see Table 5).  

 

 

 
Table 4 – Predictive Performance by Machine Learning Model. 

Model 

Training Set Testing Set 
Difference between the  

training set and testing set 
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Learning Trees .725 .579 .857 .649 .438 .810 .076 .141 .048 

Bagging .650 .632 .667 .676 .688 .667 -.026 -.056 .000 

Random Forest .675 .632 .714 .730 .563 .817 -.055 .069 -.103 

Boosting .925 .900 .950 .694 .625 .750 .231 .275 .200 

 

  

Both bagging and Random Forest presented the lowest difference in the predictive 

performance between the training and the testing set. Comparing the both models, there 

is not enough data to conclude that their total accuracy, their sensitivity and specificity 

are significantly different (see Table 5). In sum, both bagging and Random Forest were 

the more stable techniques to predict the academic achievement class. 



 

 

Table 5 – Result of the Marascuilo’s Procedure. 
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Learning Tree – Bagging .051 .055 No .086 .074 Yes .048 .038 Yes .075 .116 No .053 .123 No .19 .104 Yes 

Learning Tree – Random Forest .022 .062 No .072 .077 No .055 .066 No .05 .115 No .053 .123 No .143 .102 Yes 

Learning Tree – Boosting .154 .089 Yes .134 .101 Yes .152 .081 Yes .2 .092 Yes .321 .103 Yes .093 .073 Yes 

Bagging – Random Forest .029 .049 No .013 .061 No .103 .054 Yes .025 .119 No 0 .121 No .048 .116 No 

Bagging – Boosting .205 .080 Yes .219 .089 Yes .200 .071 Yes .275 .097 Yes .268 .101 Yes .283 .092 Yes 

Random Forest – Boosting .176 .085 Yes .206 .091 Yes .097 .089 Yes .25 .096 Yes .268 .101 Yes .236 .089 Yes 

9
3
 

 



RR EEVVII SSTT AA  EE--PPSSII                                                                                                                                                                                                                               https://www.revistaepsi.com                                                                                                                                           

RREEVVIISSTTAA  EELLEETTRRÓÓNNIICCAA  DDEE  PPSSIICCOOLLOOGGIIAA,,  EEDDUUCCAAÇÇÃÃOO  EE  SSAAÚÚDDEE                                                                                                                                           

AANNOO 44,, VVOOLLUUMMEE 11,, 22001144,, pppp..6688--110011 ..  

  

          IISSNNNN  2182-7591 

 

94 
 

Discussion 

 

The studies exploring the role of psychological and educational constructs in the 

prediction of academic performance can help to understand how the human being 

learns, can lead to improvements in the curriculum designs, and can be very helpful to 

identify students at risk of low academic achievement (Musso & Cascallar, 2009; 

Musso et al., 2013). As pointed before, the traditional techniques used to verify the 

relationship between academic achievement and its psychological and educational 

predictors suffers from a number of assumptions and from not providing high accurate 

predictions. The field of Machine Learning, on the other hand, provides several 

techniques that lead to high accuracy in the prediction of educational and academic 

outcomes. Musso et al. (2013) showed the use of a Machine Learning model in the 

prediction of academic achievement with accuracies above 90% in average. The model 

they adopted, named artificial neural networks, in spite of providing very high 

accuracies are not easily translated into a comprehensive set of predictive rules. The 

relevance of translating a complex predictive model into a comprehensive set of 

relational rules is that professionals can be trained to make the prediction themselves, 

given the result of psychological and educational tests. Moreover, a set of predictive 

rules involving psycho-educational constructs may help in the construction of theories 

regarding the relation between these constructs in the learning or academic outcome, 

filling the gap pointed by Edelsbrunner and Schneider (2013).  

In the present paper we introduced the basics of single learning trees, bagging, 

Random Forest and Boosting in the context of academic achievement prediction (high 

achievement vs low achievement). These techniques can be used to achieve higher 

accuracy rates than the traditional statistical methods, and its result are easily 

understood by professionals, since a classification tree is a roadmap of rules for 

predicting a categorical outcome. 

In order to predict the academic achievement level of 59 Medical students, 

thirteen variables were used, involving sex and measures of intelligence, metacognition, 

learning approaches, basic high school knowledge and basic cognitive processing 

indicators. About 46% of the predictors were statistically significant to differentiate the 

low and the high achievement group, presented a moderately high (above .70) effect 
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size: ENEM; the Inductive Reasoning Developmental Test; the Metacognitive Control 

Test; the TDRI’s Self-Appraisal Scale; the TCM’s Self-Appraisal Scale and the 

Discrimination indicator. In exception of the perceptual discrimination indicator, all the 

variables pointed before presented correlation coefficients greater than .30. However the 

two predictors with the highest correlation with academic achievement presented only 

moderate values (TCM=.54; TCM’s Self-Appraisal Scale=.55). 

The single learning tree model showed that the Metacognitive Control Test was 

the best predictor of the academic achievement class, and together with the Brazilian 

Learning Approaches Scale and the TDRI’s Self-Appraisal scale, explained 67% of the 

outcome’s variance. The total accuracy in the training set was 72.5%, with a sensitivity 

of 57.9% and a specificity of 85.7%. However, when the single tree model was applied 

in the testing set, the total accuracy decreased 7.6%, while the sensitivity dropped 

14.1% and the specificity 4.8%. This result suggests an overfitting of the single tree 

model. Interestingly, one of the variables that contributed in the prediction of the 

academic achievement in the single tree model (learning approach) was not statistically 

significant to differentiate the high and the low achievement group. Furthermore, the 

Brazilian Learning Approaches Scale presented a correlation of only .23 with academic 

achievement. Even tough, the learning approach together with metacognition (TCM and 

TDRI’s Self-Appraisal Scale) explained 67% of the academic achievement variance. 

The size of a correlation and the non-significance in differences between groups are not 

indicators of a bad prediction from one variable over another.  

The bagging model, by its turn, presented a lower total accuracy, sensitivity and 

specificity in the training phase if compared to the single tree model. However this 

difference was only significant in the specificity (a difference of .048). Comparing the 

prediction made in the two sample sets, the bagging model outperformed the single tree 

model, since it resulted in more stable predictions (see Table 3 and Table 4). The out-of-

bag error was .35, and the mean difference from the training set performance (accuracy, 

sensitivity and specificity) to the test set performance was only -.027. The total accuracy 

of the bagging model was 65% in the training set and 67.6% in the testing set, while the 

sensitivity and specificity was 63.2% and 66.7% in the former, and 68.8% and 66.7% in 

the latter. The classification of the bagging model became more pure when the Brazilian 

Learning Approaches Scale, the Metacognitive Control Test or the TDRI’s Self-
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Appraisal Scale was used in the split, as pointed by the decrease in the Gini index of 

Figure 4. The three more important variables in the prediction of the academic 

achievement pointed by the bagging model matched the variables selected by the single 

tree algorithm.  

The Random Forest model showed a small decrease in the out-of-bag error if 

compared to the bagging model, but the overall performance of the two models was 

basically the same, with no statistically significant difference in the training set 

prediction. If compared with bagging, the Random Forest deviation from the 

performance in the training set in relation to the testing set was only significantly 

different in the sensitivity. The mean difference of the Random Forest model from the 

training set performance to the test set performance was 2.9%. Only the sensitivity in 

the training set phase was significantly lower in the Random Forest in the comparison 

with the single learning trees. However, the Random Forest model was also more stable 

in the prediction performance than the single learning tree model. The classification of 

the Random Forest model became more pure when the Brazilian Learning Approaches  

Scale, the TDRI’s Self-Appraisal Scale, the TCM’s Self-Appraisal Scale or the the 

Metacognitive Control Test was used in the split, as pointed by the decrease in the Gini 

index. The variable importance measure of the Random Forest basically matched the 

result of the bagging and of the single tree algorithm.  

Finally, the boosting model was the one presenting the higher accuracy, 

sensitivity and specificity, being statistically different from all other models. This model 

achieved a total accuracy of 92.50% in the training set, with sensitivity of 90% and 

specificity of 95%. However, it was the model with the greater difference in the 

prediction performance from the training set to the testing set. So, we can argue that in 

spite of the great performance in the training set, this was due to over fit, since in the 

testing set the accuracy dropped 23%.  

In sum, both the bagging and the Random Forest model were the better models to 

predict high and low academic achievement of college students, since they presented the 

most stable predictions between the training and testing sample sets. Moreover, these 

models presented an overall accuracy close to 70%. Three variables were consistently 

pointed as important in the prediction (the Metacognitive Control Test, the Brazilian 

Learning Approach Scale and the TDRI’s Self-Appraisal Scale). This result goes in the 
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same direction of other studies showing the relevance of metacognition (Musso, Kyndt, 

Cascallar, & Dochy, 2012) and learning approaches (Norton & Crowley, 1995; Kyndt, 

2011) in the explication of academic achievement in higher education. 
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Quatro Métodos de Machine Learning para Predizer o Desempenho Acadêmico de 

Estudantes Universitários: Um Estudo Comparativo  

 

Resumo 

 

O presente trabalho investiga a predição de desempenho academico (alto vs. baixo) por 

meio de quatro técnicas de machine learning (learning trees, bagging, Random Forest, 

e Boosting), usando um conjunto de testes e escalas psicológicas e educacionais nas 

seguintes áreas: inteligência, metacognição, conhecimento educacional básico prévio, 

abordagens de aprendizagem e processamento cognitivo básico. A amostra foi 

composta por 77 estudantes universitários (55% mulheres) matriculados no 2º e 3º ano 

de uma Escola de Medicina particular do estado de Minas Gerais, Brasil. A amostra foi 

dividida aleatoriamente em dois conjuntos, treino e teste, para realizar-se uma 

validação cruzada. No conjunto de treino, a acurácia total da predição variou entre 

65% (bagging model) e 92.5% (boosting model), enquanto a sensibilidade variou entre 

57.9% (learning tree) e 90% (boosting model) e a especificidade entre 66.7% (bagging 

model) e 95% (boosting model). A diferença no desempenho preditivo dos modelos, 

comparando-se o conjunto de treino e o de teste, variou entre -2.6% e 23.1% em termos 

da acuracia total, entre -5.6% e 27.5% na sensibilidade e entre 0% e 20% na 

especificidade, para os modelos bagging e boosting respectivamente. Esse resultado 

evidencia que esses modelos de machine learning podem atingir altos níveis de 

acuracia na predição do desempenho academico, mas a diferença na capacidade 

preditiva entre os conjuntos de treino e de teste indica que alguns modelos são mais 

estáveis que outros na predição. As vantagens dos modelos de árvore de machine 

learning na predição do desempenho acadêmico serão apresentadas e discutidas ao 

longo do texto. 
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